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Abstract

We propose an adaptive approach in picking the wave-number parameter of absorbing boundary conditions for Schrö-
dinger-type equations. Based on the Gabor transform which captures local frequency information in the vicinity of arti-
ficial boundaries, the parameter is determined by an energy-weighted method and yields a quasi-optimal absorbing
boundary conditions. It is shown that this approach can minimize reflected waves even when the wave function is com-
posed of waves with different group velocities. We also extend the split local absorbing boundary (SLAB) method
[Z. Xu, H. Han, Phys. Rev. E 74 (2006) 037704] to problems in multi-dimensional nonlinear cases by coupling the adaptive
approach. Numerical examples of nonlinear Schrödinger equations in one and two dimensions are presented to demon-
strate the properties of the discussed absorbing boundary conditions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical solution of partial differential equations on unbounded domains arises in a large variety of
applications in science and engineering. A typical example we concern in this paper is the nonlinear Schrödinger-
type equations in multi-dimensional space, which describe the gravity waves on deep water in fluid dynamics,
the pulse propagations in optics fibers, and Bose–Einstein condensations in very low temperature; see Sulem
and Sulem [1] and Agrawal [2] for details.
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One principal difficulty to obtain numerical solutions of these problems is the unboundedness of the
physical domain. In order to overcome this difficulty, the artificial boundary method [3–6] has been
widely studied in recent decades, with which the original problem is reduced to an approximate (or
equivalent) problem in a truncated computational domain. The key point of the artificial boundary
method is to construct a ‘‘suitable’’ artificial boundary condition on the given artificial boundary for
the problem. In particular, when we consider problems containing wave propagations, we hope the arti-
ficial boundary conditions can annihilate all the incident waves so as that there is no or minor reflected
waves propagating into the interior domain. These artificial boundary conditions are also known as
absorbing boundary conditions. For linear problems, many strategies have been developed to obtain
accurate and efficient boundary conditions, such as [7,8] for hyperbolic wave equations, [9,10] for elliptic
equations, and [11,12] for parabolic equations. In the case of the linear Schrödinger equation, there are
also several works [13–19] developing transparent boundary conditions and studying their difference
approximations and stability. They utilized the integral transform (Laplace or Fourier transform) or ser-
ies expansion method to construct accurate boundary conditions which are in nonlocal forms. In prac-
tical applications the fast evaluation method [20] must be developed to discretize the nonlocal boundary
conditions. On the other hand, the authors in [21–26] constructed absorbing boundary conditions by
deriving polynomial approximations to nonlocal operators in transparent boundary conditions with Tay-
lor or rational expansions. This class of boundary conditions is local, and hence they are easy to
implement.

The treatment of the boundary conditions on the artificial boundary for nonlinear equations is difficult
in general. Hagstrom and Keller [27] studied some nonlinear elliptic problems by linearizing the equations.
Han et al. [28] and Xu et al. [29], respectively, discussed the nonlinear Burgers equation and Kardar–
Parisi–Zhang equation. The exact nonlinear artificial conditions have been obtained by using the Cole–Hopf
transformation. For the works related with the nonlinear Schrödinger equations under consideration,
Zheng [30] obtained the transparent boundary condition using the inverse scattering transform approach
for the cubic nonlinear Schrödinger equation in one dimension. Antonie et al. [31] also studied the one-
dimensional cubic nonlinear Schrödinger equation and constructed several nonlinear integro-
differential artificial boundary conditions. In [32,33], Szeftel designed absorbing boundary conditions for
one-dimensional nonlinear wave equation by the potential and the paralinear strategies. Especially, the
one-dimensional nonlinear Schrödinger equation was discussed. The perfectly matched layer (PML) [34]
was also applied to handling the nonlinear Schrödinger equations in which the nonlinear term can be
general.

Recently, Xu and Han [35] proposed a split local absorbing boundary (SLAB) method through a time-split-
ting procedure to design absorbing boundary conditions for one-dimensional nonlinear Schrödinger equa-
tions. The local absorbing boundary conditions were imposed on the split linear subproblem and yielded a
full scheme by coupling the discretizations for the interior equation and boundary subproblems. In using local
boundary conditions for the Schrödinger-type equations, it is important to pre-estimate a wave-number
parameter (or the group velocity parameter) of the wave function, as is illustrated in [35], which strongly influ-
ences the accuracy of the boundary condition. In this paper, we present an adaptive parameter selection
approach based on the Gabor transform [36] to capture the wave number near the artificial boundaries in
order that the constructed absorbing boundary conditions can minimize the reflected wave. In particular,
for nonlinear problems, a wave packet of the nonlinear Schrödinger equation will evolve into various wave
packets with different wave numbers. With the Gabor transform, the boundary conditions can succeed in
reflecting the local structure of the frequency context of the wave. Particular focus of this paper is to apply
the adaptive approach to multi-dimensional problems with nonlinear terms, in which very few boundary con-
ditions can work well.

The organization of this paper is the following. In Section 2, we first give a brief overview of absorbing
boundary conditions for the linear Schrödinger equation, and then discuss the adaptive strategy in picking
the parameter in boundary conditions. Two-dimensional boundary conditions for linear problems are also
proposed in this section. In Section 3, we are devoted to the two-dimensional nonlinear Schrödinger equation
and its numerical issues in both interior domain and artificial boundaries. Numerical examples are investigated
in Section 4.
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2. Absorbing boundary conditions for the linear Schrödinger equation

2.1. Brief overview of the absorbing boundary conditions

We shall give a brief overview for local absorbing boundary conditions of the linear Schrödinger equation
in one dimension
iwt ¼ �wxx þ V w; x 2 R; t > 0: ð1Þ

Set the truncated subdomain Xi ¼ ½xl; xr� be the computational domain. Suppose that the potential V(x) is
constant in the exterior domain Xe ¼ ð�1; xl� [ ½xr;þ1Þ.

Consider the solutions of the Schrödinger wave equation (1) in the form of one Fourier mode:
wðx; tÞ ¼ e�iðxt�kxÞ; ð2Þ

where k is the wave number corresponding to space x, and x is the time frequency. We have the dual relation
between the space–time ðx; tÞ domain and the wave number-frequency ðk;xÞ domain: k $ �i o

ox, and x$ i o
ot.

Using this duality, we can transform Schrödinger wave equation (1) into the Fourier domain resulting in a
dispersion relation to the equation:
k2 ¼ x� V : ð3Þ

Under the framework of Engquist and Majda approach [7], solving (3) in terms of the wave number k gives
k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x� V
p

; ð4Þ

where the plus sign corresponds to waves moving to the positive x direction, while the minus sign indicates
wave motions in opposite direction. The exact transformation of (4) to physical space is nonlocal in time
so that one has to save all history data in memory in order to perform numerical calculations. An effective
substitution is to approximate the square root through a rational polynomial.

Let us consider the right exterior domain and obtain boundary condition at x ¼ xr; that is, the plus sign is
taken in (4). Similar procedure can be performed in the left exterior domain. As in [25], we denote the absorb-
ing boundary condition by ABCðj1; j2Þ for that using ðj1; j2Þ-Padé approximation, where j1; j2 are the degrees
of the polynomials in the numerator and denominator, respectively.

The first absorbing boundary condition is the one developed in Shibata [21]. The author used a linear
interpolation to approximate the square root in (4) through imposing two adjustable parameters which
were positive and called the kinetic energy parameters related to the group velocities of the wave function
[24], that is,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x� V
p

¼ 1

a1 þ a2

ðx� V Þ þ a1a2

a1 þ a2

: ð5Þ
Then using the dual relations to transform back into physical space yields an absorbing boundary condition
iða1 þ a2Þwx þ ðiwt � V wþ a1a2wÞ ¼ 0: ð6Þ

Kuska [22] used a (1,1)-Padé approximation to k2 centered at a positive constant k ¼ k0
k2 ¼ k2
0

�3k þ k0

k � 3k0

þOððk � k0Þ3Þ; ð7Þ
and then obtained a second absorbing boundary condition ABC(1,1),
�wxt þ ið3k2
0 � V Þwx þ ðk3

0 � 3k0V Þwþ i3k0wt ¼ 0 ð8Þ

after transforming back into physical space through the dual transform. Here the range of validity of the Padé
polynomial is the positive part k > 0. Alonso-Mallo and Reguera [25] developed a class of absorbing bound-
ary conditions including ABC(2,1), ABC(3,2) and ABC(2,0) and absorbing boundary conditions discussed
above. Fevens and Jiang [24] developed a distinct method to construct absorbing boundary conditions. The
authors used the group velocity C ¼ ox

ok ¼ 2k to design a differential equation as absorbing boundary condi-
tion, which can absorb waves with certain group velocities Cl; l ¼ 1; . . . ; p,
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Yp

l¼1

iox þ
Cl

2

� �
w ¼ 0: ð9Þ
If we substitute the temporal derivative into ABC(1,0) with the original equation iwt ¼ �wxx þ V w, then we
obtain
ðiox þ a1Þðiox þ a2Þw ¼ 0: ð10Þ

It is a special case of Fevens and Jiang’s formula (9) with C1 ¼ 2a1 and C2 ¼ 2a2. We use the original equation
again to replace the temporal derivative terms in (8) and get
i
o

ox
þ k0

� �3

w ¼ 0; ð11Þ
which is also a special case of Eq. (9) for p ¼ 3 and group velocities C1 ¼ C2 ¼ C3 ¼ 2k0.

2.2. Weighted wave-number parameter based on Gabor transform

In the above absorbing boundary conditions, the authors all imposed parameters in the formulae with dif-
ferent meanings. Therefore, perhaps one of the most important issues is how to pick suitable parameters such
that they can minimize the reflection of the wave. Noticing that the relation between the group velocity C and
wave number k is
C ¼ ox
ok
¼ 2k; ð12Þ
we need only calculate one of them.
For the initial wave composed of waves with different group velocities, they shall evolve into different wave

packets. Each of them has an unchanged group velocity. These wave packets hit the artificial boundary sep-
arately. Therefore, in a general physical insight, if only we pre-estimate one component of group velocities
which is a function of time, the boundary condition can well annihilate the reflected wave. Let us consider
the third-order boundary condition ABC(1,1) given in Section 2.1 as example to introduce our idea, in which
only one parameter k0 need to be pre-estimated. Similarly, for convenience, the discussion is focused on the
right boundary.

It is important to note that we must estimate the parameter in the frequency domain. Note that the wave
function at time t can be expressed in terms of a Fourier series and a single Fourier mode is essentially a plane
wave. A general strategy suggested in Fevens and Jiang [24] to pick the wave-number parameter k0, which is a
function of time t, is to use a Fourier series expansion of the physical variable in space, and then take one of
the positive components so that its Fourier mode is dominant. The Fourier transform presents the frequency
information of the wave over the whole interior domain. However, in our situations to construct absorbing
boundary conditions, we are interested in the frequency content of the wave in the vicinity of the artificial
boundary. So it is necessary to obtain the local structure of the wave in the frequency domain. One approach
is to replace the Fourier transform with the Gabor transform which is also known as a windowed Fourier
transform. In the frequency domain with the Gabor transform, we have
ŵðk; tÞ ¼
Z xr

xl

W ðxÞwðx; tÞe�ikx ¼
Z xr

xr�b
wðx; tÞe�ikx; ð13Þ
where the window function is
W ðxÞ ¼
1; x 2 ½xr � b; xr�;
0; otherwise;

�
ð14Þ
and b is the window width. Then one choice for k0 is take the frequency such that its spectrum is the maxi-
mum; that is,
jŵðk0; tÞj ¼ sup
kP0

fjŵðk; tÞjg: ð15Þ
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We remark that we can also utilize the time windowed Fourier transform to approximate temporal frequency
information x, and then obtain an estimation of the wave number k0 with the dispersion relation (4). How-
ever, it is clear that the Gabor transform in time depends on the history data on the artificial boundaries.
Therefore, although the formulae of absorbing boundary conditions are in local forms, they are nonlocal
in practice.

The formula (15) is also not the best choice in many practical computations. On one hand, this procedure
involves many logical ‘‘if’’ structures in order to compare the magnitudes of the Fourier modes, which are not
very efficient in calculations in some computational environments. On the other hand, when two Fourier
modes are both dominant, it is obvious to choose k0 a medial value of two different wave numbers instead
of taking one of them, in order to minimize the reflection. Therefore, an improvement is to use a weighted
strategy, we call it the energy-weighted wave-number parameter selection approach, as follows:
Table
L1-erro

p

1
2
3
4
5

k0 ¼
Z 1

0

ðjŵðk; tÞjpkÞ dk
Z 1

0

jŵðk; tÞjp;
�

ð16Þ
with p a positive real number.
We give the following remarks:

Remark 1. The window width b is correlative with the Gibbs phenomena induced by the discontinuities of the
window function. The narrower b is, the more Gibbs effect. However, if the window width b is very large, then
the obtained parameter cannot correctly response the frequency information in the vicinity of the boundary.

Remark 2. When p ¼ þ1, Eq. (16) is equivalent to (15). However, numerical experiments illustrate that the
absorbing boundary conditions work best when p is in a suitable intermediate interval. Table 1 suggests p ¼ 4
is a good choice.
2.3. Multi-dimensions

Let us consider the extension of previous ABCs which are local for the linear Schrödinger equation in two
dimensions:
iwt ¼ �ðwxx þ wyyÞ þ V w; ðx; yÞ 2 R2; ð17Þ
with the potential V constant. Denote the dual variables to ðx; y; tÞ by ðn; g;xÞ with the correspondence
n$ �i o

ox; g$ �i o
oy, and x$ i o

ot. Then the related dispersion relation to Eq. (17) gives
n2 þ g2 ¼ x� V : ð18Þ

We truncate the unbounded domain to get a computational domain ½0; L�2. Without loss of generality, con-
sider the east boundary Ce ¼ fðx; yÞjx ¼ L; 0 6 y 6 Lg which corresponds to the positive branch to n of the
dispersion relation (18) as follows:
n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� V � g2

p
: ð19Þ
1
rs E1 and reflection ratios r for different parameters and grid sizes with adaptive parameter selection

E1 for Dx ¼ 0:1 E1 for Dx ¼ 0:05 r for Dx ¼ 0:1 r for Dx ¼ 0:05

Fourier Gabor Fourier Gabor Fourier Gabor Fourier Gabor

1.62e�2 1.79e�2 3.28e�2 3.47e�2 7.43e�3 7.63e�3 2.87e�2 2.94e�2
5.12e�3 2.72e�3 4.51e�3 2.62e�3 3.79e�4 1.65e�4 3.23e�4 1.70e�4
5.29e�3 1.93e�3 4.69e�3 1.54e�3 3.66e�4 7.32e�5 2.99e�4 4.48e�5
5.27e�3 1.93e�3 5.01e�3 1.56e�3 3.76e�4 7.14e�5 3.45e�4 4.21e�5
5.07e�3 1.95e�3 5.07e�3 1.59e�3 3.70e�4 7.23e�5 3.70e�4 4.49e�5
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With the same procedure as that used in one-dimensional case, we can get the similar ABCs as in Section 2.1.
We consider the (1,1)-Padé approximation to the square n2 in the dispersion relation centered as a positive
constant n ¼ n0, and obtain an approximation to (19)
ðg2 � xþ V � 3n2
0Þnþ n3

0 � 3n0ðg2 � xþ V Þ ¼ 0; ð20Þ

which is first order in n. Here the range of validity of the Padé polynomial is the positive part n > 0; see Kuska
[22]. Transforming (20) back into the physical space through the dual relations, we have an ABC on the east
boundary of the form:
Ce : iwxyy � wxt þ ið3n2
0 � V Þwx þ ðn3

0 � 3n0V Þwþ 3n0wyy þ in0wt ¼ 0: ð21Þ
Absorbing boundary conditions on the west, north and south boundaries can also be obtained through using
(1,1)-Padé approximations to n2 centered at �n0, to g2 centered at g0, and to g2 centered at �g0, respectively,
which are
Cw : iwxyy � wxt þ ið3n2
0 � V Þwx � ðn3

0 � 3n0V Þw� 3n0wyy � in0wt ¼ 0; ð22Þ
Cn : iwxxy � wyt þ ið3g2

0 � V Þwy þ ðg3
0 � 3g0V Þwþ 3g0wxx þ iwt ¼ 0; ð23Þ

Cs : iwxxy � wyt þ ið3g2
0 � V Þwy � ðg3

0 � 3g0V Þw� 3g0wxx � iwt ¼ 0; ð24Þ
with g0 a positive constant as n0.
Now let us look at the formula at the north east corner ðx; yÞ ¼ ðL; LÞ. We can also approximate the two-

dimensional dispersion relation (18) in the quarter fðn; gÞ : n > 0; g > 0g using (1,1)-Padé to both n2 and g2

with the corresponding centered point ðn0; g0Þ to obtain
n2
0

�3nþ n0

n� 3n0

þ g2
0

�3gþ g0

g� 3g0

¼ x� V : ð25Þ
Then after multiplying ðn� 3n0Þðg� 3g0Þ in both sides, we have
� xngþ 3n0xgþ 3g0xnþ ðV � 3n2
0 � 3g2

0Þng� 9n0g0xþ ðn3
0 þ 9n0g

2
0 � 3n0V Þg

þ ðg3
0 þ 9n2

0g0 � 3n0V Þnþ ð9n0g0V � 3n3
0g0 � 3g3

0n0Þ ¼ 0: ð26Þ
Then performing the inverse transform to physical space yields the ABC(1,1) at the corner point,
iwxyt þ 3n0wyt þ 3g0wxt þ ð3n2
0 þ 3g2

0 � V Þwxy � 9in0g0wt � iðn3
0 þ 9n0g

2
0 � 3n0V Þwy

� iðg3
0 þ 9n2

0g0 � 3n0V Þwx þ ð9n0g0V � 3n3
0g0 � 3g3

0n0Þw ¼ 0: ð27Þ
Extension of the adaptive parameter selection for one-dimensional version to multi-dimensional cases is
straightforward. We note that a multi-dimensional problem can be split into a series of one-dimensional ones.
Thus we can obtain the estimation of the parameters at every boundary grid points by a dimension-by-dimen-
sion procedure. For example, in order to compute the wave number on the east boundary, we have the Gabor
transform in x direction:
~wðn; y; tÞ ¼
Z L

L�bðyÞ
wðx; y; tÞe�inx dx; ð28Þ
where the window length is a function of y. The parameter n0ðyÞ can then be determined by using the method
in Section 2.2.

3. Nonlinear Schrödinger equations

We now consider the nonlinear Schrödinger equation in two dimensions as follows:
iwtðx; y; tÞ ¼ �ðwxx þ wyyÞ þ f ðjwj2Þwþ V ðx; y; tÞw; ðx; yÞ 2 R2: ð29Þ
We shall extend the previous work of the split local absorbing boundary (SLAB) method [35] in one-dimen-
sional version to solving the two-dimensional case. Denote the approximation of w on the grid point ðxi; yj; t

nÞ



Z. Xu et al. / Journal of Computational Physics 225 (2007) 1577–1589 1583
by wn
ij for 0 6 i 6 I and 0 6 j 6 J , with xi ¼ iDx, yj ¼ jDy, tn ¼ nDt, and xI ¼ yJ ¼ L. Let us first describe the

finite difference scheme for Eq. (29) in the interior domain ð0; LÞ2, which will be connected with the discreti-
zation on the artificial boundaries.

3.1. Semi-implicit interior scheme

In our previous work in one dimension [35], the full-implicit Crank–Nicholson scheme, which is uncondi-
tionally stable, was used. However, one has to solve the nonlinear algebraic system iteratively at each time
step. It is time consuming in particular for the two-dimensional case. In order to avoid the iterative process,
we use the following semi-implicit scheme [37], which was shown efficient and robust in comparison with var-
ious difference schemes for solving nonlinear Schrödinger equations [38],
i
wnþ1

ij � wn
ij

Dt
¼ �ðDþx D�x þ Dþy D�y Þ

wnþ1
ij þ wn

ij

2
þ 3

2
f ðjun

ijj
2Þ � 1

2
f ðjun�1

ij j
2Þ þ V ij

� �
wnþ1

ij þ wn
ij

2
; ð30Þ
where D+ and D� represent the forward and backward differences, respectively. This is a five-points scheme
and its truncation error is order OðDt2 þ Dx2 þ Dy2Þ as that of the Crank–Nicholson scheme. However, since
the nonlinear term is approximated by the known variables through an extrapolation formula, we need only to
solve a linear algebraic system at each time step.
3.2. Numerical approximation on the artificial boundary

We have obtained the discrete scheme by formula (30) in the interior point ðxi; yjÞ for 1 6 i 6 I � 1 and
1 6 j 6 J � 1. Now we concentrate on the boundary conditions, in which we shall perform the local time-
splitting procedure. The basic idea of the SLAB method is to split the original equation into several subprob-
lems which are easy to be handled, and then solve them alternatively in a small time step Dt. Consider a
standard splitting for Eq. (29) in the vicinity of the artificial boundary to a nonlinear subproblem
iwt ¼ f ðjwj2Þw; ð31Þ

and a linear subproblem
iwt ¼ �ðwxx þ wyyÞ þ V w: ð32Þ
We carry out the splitting on boundary points fxa; ybg for
a 2 f0; 1; I � 1; Ig; and b 2 f0; 1; J � 1; Jg:

Following [39], in the nonlinear step, we have an approximate solver for explicitly discretizing the ODE (31)
w�a;b ¼ e�if ðjwn
a;bj

2ÞDtwn
a;b; ð33Þ
which keeps w invariant, and does not require any boundary condition. Noting the next step for the time-split-
ting procedure is to integrate a linear subproblem (32), we impose here the local absorbing boundary condition
discussed in Section 2. For example, using formulae (21), (27) and their corresponding formulae on every
boundaries and corners, we obtain the full scheme of the problem by approximating them with finite difference
expressions. Here the discrete forms of the terms in the east boundary condition (21) are
wx ¼ D�x
wnþ1

I;j þ w�I ;j
2

; w ¼ S�x
wnþ1

I ;j þ w�I;j
2

; ð34Þ

wxt ¼ D�x
wnþ1

I ;j � w�I;j
Dt

; wt ¼ S�x
wnþ1

I;j � w�I ;j
Dt

; ð35Þ

wxyy ¼ D�x Dþy D�y
wnþ1

I ;j þ w�I;j
2

; wyy ¼ S�x Dþy D�y
wnþ1

I ;j þ w�I ;j
2

; ð36Þ
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with S� the backward sum, for example,
S�x w�I;j ¼
1

2
ðw�I�1;j þ w�I;jÞ;
and the discrete forms of the terms in the corner boundary condition (27) are
wxyt ¼ D�x D�y
wnþ1

I ;J � w�I;J
Dt

; wxy ¼ D�x D�y
wnþ1

I ;J þ w�I;J
2

; ð37Þ

wyt ¼ S�x D�y
wnþ1

I ;J � w�I;J
Dt

; wy ¼ S�x D�y
wnþ1

I ;J þ w�I ;J
2

; ð38Þ

wxt ¼ D�x S�y
wnþ1

I;J � w�I ;J
Dt

; wx ¼ D�x S�y
wnþ1

I;J þ w�I ;J
2

; ð39Þ

wt ¼ S�x S�y
wnþ1

I;J � w�I;J
Dt

; w ¼ S�x S�y
wnþ1

I ;J þ w�I;J
2

: ð40Þ
Similar discretizations can be used for the other three boundaries and the other three corners. Thus we obtain
the full-discrete scheme for the nonlinear Schrödinger equation (29) in two dimensions, which yields a linear
algebraic system at each time steps.

Remark 3. Near the artificial boundaries, the truncation error of accuracy is ðDx2 þ Dy2 þ DtÞ because we only
adopt the first-order splitting. In order to improve the accuracy of time-splitting to higher order, such as using
the Strang splitting [40], we will obtain a nonlinear algebraic system which have to be solved through the
iterate approach as discussed in Ref. [35].

4. Numerical examples

We test our absorbing boundary conditions given in the previous sections for the nonlinear Schrödinger
equation. In particular, we test the strategy of adaptive parameter selection in the one-dimensional case. Based
on its outstanding performance in one dimension, two-dimensional example of extensions is also given.

Example 1. We are going to test the performance of the adaptive parameter selection for absorbing boundary
conditions by solving the cubic nonlinear Schrödinger equation in one dimension
iwt ¼ �wxx þ gjwj2wþ V w; ð41Þ

where g is a real constant and V � 0. If g is positive, the equation represents repulsive interactions. If g is neg-
ative, the equation represents attractive interactions, and admits bright soliton solution
wðx; tÞ ¼ A

ffiffiffiffiffiffiffi
�2

g

s
secðAx� 2ABtÞeiBxþ6ðA2�B2Þt ð42Þ
with A, B real parameters related to the amplitude and velocity of the soliton. The numerical scheme is the 1D
reduction of 2D version described in Section 3. The first example we consider the case of g ¼ �2 and the initial
condition
wðx; tÞ ¼ secðx� 10Þe2iðx�10Þ þ secðx� 30Þe5iðx�30Þ: ð43Þ
It represents two solitons with amplitude 1, located at two isolated centers x ¼ 10 and 30, respectively, prop-
agate to the right. Their propagating velocities are double of their wave numbers; that is, 4 and 10, respec-
tively. We compute the solution up to tn ¼ 10 in interval ½0; L� for L ¼ 40. As in [22,24,35], to see the
influence of parameter k0, we evaluate the effectiveness of absorbing boundary conditions by calculating
the reflection ratios as follows:
r ¼
XI

j¼0

jwn
j j

2

,XI

j¼0

jw0
j j

2
: ð44Þ
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The ratio r is handy in the measurement of the quality of the ABC. For example, r ¼ 0 reflects that the solitons
have passed through the boundary completely; whereas r ¼ 1 indicates the waves are completely reflected into
the interior domain by the artificial boundaries. At the left boundary x ¼ 0, we set k0 ¼ 0 since there is no left-
going wave. We also hope the reflected waves from the right boundary can also be reflected by the left bound-
ary, therefore the reflection ratios of absorbing boundary conditions at the right boundary can be correctly
calculated. We show numerical results in Table 1 for different p in (16) and different transforms, in which
we also illustrate L1-errors defined by
Table
L1-erro

k0

2
3.5
5

Fig.
E1 ¼
1

I þ 1

XI

j¼0

jwn
j � wðxj; tnÞj: ð45Þ
Here and hereafter, the time steps Dt are taken to be Dt ¼ Dx2. It is not the restriction of stability, but the
requirement for compensating the accuracy since we just use the first-order splitting on the artificial bound-
aries. For the Gabor transform to pre-estimate the parameter, the window lengths are set to b ¼ L=4. We also
compare the results in Table 2 without the adaptive parameter selection but fixing the parameter k0 ¼ 2, 3.5
and 5, respectively. It is observed that the weighted wave-number parameter method can well improve numer-
ical accuracy.

There are two time phases in the process for the two solitons hit the right boundary separately. The first
phase is for t 2 ½0:5; 1:5� when the first wave with the wave number 5 transmits the boundary; while the second
phase is for t 2 ½6; 8� when the second wave with the wave number 2 passes through the boundary. In order to
see the resultant wave-number parameter of the methods in discussion, we illustrate the wave numbers as a
function of time t for two phases in Fig. 1, where we denote the resultant wave number with Fourier transform
and p norm by Fp wave number, the results with Gabor transform and p norm by Gp wave number. We see
that the parameters with Gabor transform, especially when p ¼ 4, response a better information for the
solution, which well agrees with the results in Table 1.

In order to see the influence of the window length b, we compute the solution for different lengths in Table 3
with a fixed p. The window length is in direct proportion to the wave number b ¼ bk0, in which k0 takes the
value at time t ¼ tn�1 for the calculations at tn. We see that it is necessary to choose a b larger than 1.
2
rs E1 and reflection ratios r for different parameters and grid sizes without adaptivity

E1 r

Dx ¼ 0:1 Dx ¼ 0:05 Dx ¼ 0:1 Dx ¼ 0:05

3.22e�3 3.26e�3 2.00e�4 1.73e�4
5.33e�3 4.98e�3 8.58e�4 7.89e�4
1.26e�2 1.23e�2 4.81e�3 4.60e�3

*****************************************************************************************************

t

k 0

0.5 0.75 1 1.25 1.5

2

3

4

5

6

F2
G2
F3
G3
F4
G4*

*********************************************************************************************************************************************************
************************************************

t

k 0

6 6.5 7 7.5 8

2

2.5

3

3.5

F2
G2
F3
G3
F4
G4*

1. Weighted wave numbers k0 as a function of time. Left: the first phase for t 2 ½0:5; 1:5�; right: the second phase for t 2 ½6; 8�.



Table 3
L1-errors E1 and reflection ratios r for different window lengths determined adaptively as b ¼ bk0. p ¼ 4

b E1 r

Dx ¼ 0:1 Dx ¼ 0:05 Dx ¼ 0:1 Dx ¼ 0:05

0.5 7.71e�3 2.10e�3 1.73e�3 1.23e�4
1 1.91e�3 1.57e�3 7.35e�5 4.37e�5
2 1.92e�3 1.55e�3 6.93e�5 4.10e�5
3 1.92e�3 1.53e�3 7.02e�5 3.98e�5
4 1.93e�3 1.54e�3 7.09e�5 4.02e�5
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Example 2. We then consider a nonlinear wave with repulsive interaction (g ¼ 2 in Eq. (41)). The initial data
and potential function are taken to be Gaussian pulses
wðx; 0Þ ¼ e�0:1ðx�x0Þ2 and V ðxÞ ¼ e�0:5ðx�x0Þ2 ; ð46Þ

with x0 ¼ 15. This has been an example in [35] used to model expansion of a Bose–Einstein condensate which
is composed of waves with different group velocities. The frequency context at the boundaries is depending on
the temporal evolution. In [35], the authors obtained the results under different wave-number parameters
which are independent of time t. It was illustrated that a very bad result appeared if we cannot choose a suit-
able k0. Therefore, it is necessary to capture this parameter adaptively in order to minimize the nonphysical
reflection.

In the calculation, L ¼ 30, Dx ¼ 0:1, and Dt ¼ 0:01 are chosen. The numerical results with the same mesh
sizes by using the proposed ABC in a large domain ½�15; 45� are taken to be a reference solution which is
x
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Fig. 2. The jwj solutions at time t ¼ 4 and 6.
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Fig. 3. The wave numbers k0 as functions of time t.
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regarded as the ‘‘exact’’ solution, since the analytic solution is unknown. Fig. 2 shows the motion of the wave
with the ABCs at time t ¼ 4 and 6, in which we take p ¼ 4 and the window length of Gabor transform
b ¼ L=4. It is illustrated that the reflected wave is very small when the waves hit the boundaries under our
adaptive parameter selection strategy. We also show the wave-number parameters at both boundaries as
= 1 . 000. 2 0 . 4 0 . 6 0 . 8 1
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functions of time in Fig. 3, in which we see that the wave numbers decay with time after the waves reach
artificial boundaries.

Example 3. This is a two-dimensional example for Eq. (29) with cubic nonlinearity f ðjwj2Þ ¼ �jwj2 in homo-
geneous media; i.e., the potential V � 0. We consider the temporal evolution of an initial packet of the wave
centered at ðx; yÞ ¼ ð5; 5Þ
wðx; y; 0Þ ¼
ffiffiffi
2
p

e�ðx�5Þ2�ðy�5Þ2 e2iðxþy�10Þ: ð47Þ

The wave packet moves along the northeast direction and impinges on the artificial boundaries Ce and Cn. At
the same time, the amplitude of the wave packet decreases with time due to the expansion effect. In the cal-
culations, we set the computational domain be ½0; L�2 for L ¼ 10. We also set p ¼ 4 and the window length of
Gabor transform b ¼ L=4. We show numerical solutions of jwj at time t ¼ 0:5, 1, 1.5 and 2 in Fig. 4 for
h ¼ Dx ¼ Dy ¼ 0:05 and Dt ¼ h2. We see the wave can be well absorbed with only minor reflections. In order
to see the errors, we take the numerical result in a large domain ½0; 20�2 with h ¼ 0:05 to be a reference solu-
tion. In Fig. 5, we plot the temporal evolution of the solutions and their errors for different mesh sizes at posi-
tions ðx; yÞ ¼ ð10; 10Þ and (10, 5). These results illustrate that the discussed method can also works well for the
two-dimensional problem.
5. Concluding remarks

We develop an efficient adaptive parameter approach for absorbing boundary conditions of Schrödinger-
type equations. This approach is coupled with the local time-splitting method to constitute a complete proce-
dure for nonlinear problems. We also introduce an extension to deal with absorbing boundary conditions for
multi-dimensional nonlinear Schrödinger equations. Numerical examples are performed to show the attractive
features of the approach under consideration. Related further work includes the stability and error analysis of
the proposed approach and further extension to more complicated initial-boundary value problems. Another
problem is induced by the complexity of nonlinear mechanics. In some situations, the outgoing waves will
return to the interior domain due to their interactions of nonlinear packets. This open problem is still unsolved
in this paper and we leave for further consideration.
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